834 research outputs found

    New Brown Dwarfs and an Updated Initial Mass Function in Taurus

    Full text link
    I have performed a search for young low-mass stars and brown dwarfs (BDs) in 2 regions encompassing a total area of 4 deg^2 in the Taurus star-forming region, discovering 15 new members of Taurus. In addition, I present 7 new members outside of these areas from the initial stage of a survey of all of Taurus. These 22 objects exhibit spectral types of M4.5-M9.25 and masses of 0.3-0.015 M_sun according to the theoretical evolutionary models of Baraffe and Chabrier, 7 of which are likely to be BDs. Emission in H(alpha), He I, Ca II, [O I], and [S II] and excess emission in optical and near-IR bands among some of these objects suggest the presence of accretion, outflows, and circumstellar disks. The results from the 4 deg^2 survey have been combined with previous studies of Taurus to arrive at an IMF for a total area of 12.4 deg^2. As in the previous IMFs for Taurus, the updated IMF peaks at a higher mass (0.8 M_sun) than the mass functions in IC 348 and Orion (0.1-0.2 M_sun). Meanwhile, the deficit of BDs in Taurus appears to be less significant (x1.4-1.8) than found in earlier studies (x2) because of a slightly higher BD fraction in the new IMF for Taurus and a lower BD fraction in the new spectroscopic IMF for the Trapezium from Slesnick and coworkers. The spatial distribution of the low-mass stars and BDs discovered in the two new survey areas closely matches that of the more massive members. Thus, on the degree size scales (~3 pc) probed to date, there is no indication that BDs form through ejection.Comment: 35 pages, The Astrophysical Journal, 2004, v617 (December 20

    The Taurus Boundary of Stellar/Substellar (TBOSS) Survey I: far-IR disk emission measured with Herschel

    Full text link
    With Herschel/PACS 134 low mass members of the Taurus star-forming region spanning the M4-L0 spectral type range and covering the transition from low mass stars to brown dwarfs were observed. Combining the new Herschel results with other programs, a total of 150 of the 154 M4-L0 Taurus members members have observations with Herschel. Among the 150 targets, 70um flux densities were measured for 7 of the 7 ClassI objects, 48 of the 67 ClassII members, and 3 of the 76 ClassIII targets. For the detected ClassII objects, the median 70um flux density level declines with spectral type, however, the distribution of excess relative to central object flux density does not change across the stellar/substellar boundary in the M4-L0 range. Connecting the 70um TBOSS values with the results from K0-M3 ClassII members results in the first comprehensive census of far-IR emission across the full mass spectrum of the stellar and substellar population of a star-forming region, and the median flux density declines with spectral type in a trend analogous to the flux density decline expected for the central objects. SEDs were constructed for all TBOSS targets covering the optical to far-IR range and extending to the submm/mm for a subset of sources. Based on an initial exploration of the impact of different physical parameters; inclination, scale height and flaring have the largest influence on the PACS flux densities. From the 24um to 70um spectral index of the SEDs, 5 new candidate transition disks were identified. The steep 24um to 70um slope for a subset of 8 TBOSS targets may be an indication of truncated disks in these systems.Two examples of mixed pair systems that include secondaries with disks were measured. Finally, comparing the TBOSS results with a Herschel study of Ophiuchus brown dwarfs reveals a lower fraction of disks around the Taurus substellar population.Comment: 64 pages, 33 figures, 12 tables, accepted for publication in A&

    The T Tauri Phase Down to Nearly Planetary Masses: Echelle Spectra of 82 Very Low Mass Stars and Brown Dwarfs

    Full text link
    Using the largest high-resolution spectroscopic sample to date of young, very low mass stars (VLMS) and brown dwarfs (BDs), we investigate disk accretion in objects ranging from just above the hydrogen-burning limit all the way to nearly planetary masses. Our 82 targets span spectral types from M5 to M9.5, or masses from 0.15 Msun down to ~15 Jupiters. They are confirmed members of the rho Oph, Taurus, Cha I, IC 348, R CrA, Upper Sco and TW Hydrae regions, with ages = M6.5). We find that: (1) classical T Tauri-like disk-accretion persists in the BD domain down to nearly the deuterium-burning limit; (2) in addition to H-alpha, permitted emission lines of CaII, OI and HeI are also good accretion indicators, as in CTTs; (3) the CaII 8662A flux is an excellent quantitative measure of the accretion rate (Mdot) in VLMS and BDs(as in CTTs); (4) Mdot diminishes as M^2 -- our measurements support previous findings of this correlation, and extend it to the entire range of sub-stellar masses; (5) the accretor fraction among VLMS and BDs decreases substantially with age, as in higher-mass stars; (6) at any given age, the VLMS and BD accretor fraction is comparable to that in higher-mass stars; and (7) a number of sources with IR disk excesses do not evince measurable accretion, with the incidence of such a mismatch increasing with age: this implies that disks in the low mass regime can persist beyond the main accretion phase, and parallels the transition from the classical to post-T Tauri stage in more massive stars. These strong similarities at young ages, between higher-mass stars and low-mass bodies close to and below the hydrogen-burning limit, are consistent with a common formation mechanism in the two mass regimes. (abridged)Comment: 64 pages, 7 figures. ApJ accepte

    Disc orientations in pre-main-sequence multiple systems. A study in southern star formation regions

    Get PDF
    Classical T Tauri stars are encircled by accretion discs most of the time unresolved by conventional imaging observation. However, numerical simulations show that unresolved aperture linear polarimetry can be used to extract information about the geometry of the immediate circumstellar medium that scatter the starlight. Monin, Menard & Duchene (1998) previously suggested that polarimetry can be used to trace the relative orientation of discs in young binary systems in order to shed light on the stellar and planet formation process. In this paper, we report on new VLT/FORS1 optical linear polarisation measurements of 23 southern binaries spanning a range of separation from 0.8'' to 10''. In each field, the polarisation of the central binary is extracted, as well as the polarisation of nearby stars in order to estimate the local interstellar polarisation. We find that, in general, the linear polarisation vectors of individual components in binary systems tend to be parallel to each other. The amplitude of their polarisations are also correlated. These findings are in agreement with our previous work and extend the trend to smaller separations. They are also similar to other studies, e.g., Donar et al. 1999; Jensen et al. 2000, 2004; Wolf et al. 2001. However, we also find a few systems showing large differences in polarisation level, possibly indicating different inclinations to the line-of-sight for their discs.Comment: 13 pages, 11 figures, accepted in Astronomy and Astrophysics. accepted in Astronomy and Astrophysics (A&A

    Inhomogeneous turbulence in the vicinity of a large scale coherent vortex

    Full text link
    We study the statistics of turbulent velocity fluctuations in the neighbourhood of a strong large scale vortex at very large Reynolds number. At each distance from the vortex core, we observe that the velocity spectrum has a power law ``inertial range'' of scales and that intermittency -- defined as the variation of the probability density function (PDF) of velocity increments as the length of the increment is varied -- is also present. We show that the spectrum scaling exponents and intermittency characteristics vary with the distance to the vortex. They are also influenced by the large scale dynamics of the vortex.Comment: submitted to europhys lett, 6 pages, 5 figure

    On the Nature of Incompressible Magnetohydrodynamic Turbulence

    Get PDF
    A novel model of incompressible magnetohydrodynamic turbulence in the presence of a strong external magnetic field is proposed for explanation of recent numerical results. According to the proposed model, in the presence of the strong external magnetic field, incompressible magnetohydrodynamic turbulence becomes nonlocal in the sense that low frequency modes cause decorrelation of interacting high frequency modes from the inertial interval. It is shown that the obtained nonlocal spectrum of the inertial range of incompressible magnetohydrodynamic turbulence represents an anisotropic analogue of Kraichnan's nonlocal spectrum of hydrodynamic turbulence. Based on the analysis performed in the framework of the weak coupling approximation, which represents one of the equivalent formulations of the direct interaction approximation, it is shown that incompressible magnetohydrodynamic turbulence could be both local and nonlocal and therefore anisotropic analogues of both the Kolmogorov and Kraichnan spectra are realizable in incompressible magnetohydrodynamic turbulence.Comment: Physics of Plasmas (Accepted). A small chapter added about 2D MHD turbulenc

    Superdiffusion of massive particles induced by multi-scale velocity fields

    Full text link
    We study drag-induced diffusion of massive particles in scale-free velocity fields, where superdiffusive behavior emerges due to the scale-free size distribution of the vortices of the underlying velocity field. The results show qualitative resemblance to what is observed in fluid systems, namely the diffusive exponent for the mean square separation of pairs of particles and the preferential concentration of the particles, both as a function of the response time.Comment: 5 pages, 5 figures. Accepted for publication in EP

    Lagrangian statistics of particle pairs in homogeneous isotropic turbulence

    Get PDF
    We present a detailed investigation of the particle pair separation process in homogeneous isotropic turbulence. We use data from direct numerical simulations up to Taylor's Reynolds number 280 following the evolution of about two million passive tracers advected by the flow over a time span of about three decades. We present data for both the separation distance and the relative velocity statistics. Statistics are measured along the particle pair trajectories both as a function of time and as a function of their separation, i.e. at fixed scales. We compare and contrast both sets of statistics in order to gain an insight into the mechanisms governing the separation process. We find very high levels of intermittency in the early stages, that is, for travel times up to order ten Kolmogorov time scales. The fixed scale statistics allow us to quantify anomalous corrections to Richardson diffusion in the inertial range of scales for those pairs that separate rapidly. It also allows a quantitative analysis of intermittency corrections for the relative velocity statistics.Comment: 16 pages, 16 figure

    Improved estimation of Fokker-Planck equations through optimisation

    Full text link
    An improved method for the description of hierarchical complex systems by means of a Fokker-Planck equation is presented. In particular the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm for constraint problems (L-BFGS-B) is used to minimize the distance between the numerical solutions of the Fokker-Planck equation and the empirical probability density functions and thus to estimate properly the drift and diffusion term of the Fokker-Planck equation. The optimisation routine is applied to a time series of velocity measurements obtained from a turbulent helium gas jet in order to demonstrate the benefits and to quantify the improvements of this new optimisation routine
    • …
    corecore